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Decoherence in Bose-Einstein condensates: Towards bigger and better Schro¨dinger cats

Diego A. R. Dalvit,1,* Jacek Dziarmaga,1,2,† and Wojciech H. Zurek1,‡

1Los Alamos National Laboratory, T-6, Theoretical Division, MS-B288, Los Alamos, New Mexico 87545
2Institute of Physics, Jagiellonian University, Krako´w, Poland

~Received 21 January 2000; published 13 June 2000!

We consider a quantum superposition of Bose-Einstein condensates~BEC’s! in two immiscible internal
states. A decoherence rate for the resulting Schro¨dinger cat is calculated and shown to be a significant threat to
this macroscopic quantum superposition of BEC’s. An experimental scenario is outlined where the decoher-
ence rate due to the thermal cloud is dramatically reduced thanks to trap engineering and ‘‘symmetrization’’ of
the environment, which allow the Schro¨dinger cat to be an approximate pointer state.

PACS number~s!: 03.75.Fi, 03.65.2w
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I. MOTIVATION AND SUMMARY OF RESULTS

Microscopic quantum superpositions are an every
physicist’s experience. Macroscopic quantum superpositi
despite nearly a century of experimentation with quant
mechanics, are still encountered only very rarely. Fast de
herence of macroscopically distinct states is to be blam
@1#. In spite of that, recent years have witnessed an inter
ing quantum optics experiment@2# on decoherence of a few
photon superpositions. Moreover, matter-wave interfere
in fullerene C60 has been observed@3#. Another recent ex-
periment has succeeded in ‘‘engineering’’ the environm
in the context of trapped ions@4#. This success plus rapi
progress in Bose-Einstein condensation~BEC! of alkali-
metal atomic vapors@5# tempt one to push similar investiga
tions even further into the macroscopic domain. The cond
sates can contain up to 107 atoms in the same quantum sta
What is more, it is possible to prepare condensates in
different internal states of the atoms. Some of these pair
internal levels are immiscible, and their condensates ten
phase separate into distinct domains with definite inter
states@6#. The immiscibility seems to be a prerequisite
preparing a quantum superposition in which all atoms are
one or the other internal state,uc&5(uN,0&1u0,N&)/A2,
whereN is the total number of condensed atoms. There ar
least two theoretical proposals of preparing a macrosco
quantum superposition in this framework@7,8#. Neither of
them addresses the crucial question of decoherence.

We find the quantum superposition state involving a s
nificant number of BEC atoms to be practically impossible
the standard harmonic trap. Our master equation~derived in
Sec. IV!, when applied to the standard harmonic trap of f
quencyv, gives for the decoherence rate due to the envir
ment of noncondensed atoms

tdec
21'16p3S 4pa2

NE

V
vTDN2, ~1!

whereN is the number of condensed atoms,vT5A2kBT/m
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is the thermal velocity in the noncondensed thermal clouda
is the scattering length,V is the volume of the trap, andNE is
the number of atoms in the thermal cloud,

NE'em/kBTS kBT

\v D 3

. ~2!

Herem,0 is the chemical potential.
Equation~1! gives the rate of decoherence to leading

der in the fugacityz5exp(bm) and also to leading order in
the condensate sizeN. Next-to-leading-order terms ar
O(z2) and O(N), in agreement with Refs.@9,10#, so they
were neglected here. We also assume thatN is small enough
for a condensate to exist in a single mode as opposed to
large-N Thomas-Fermi limit. Given all these assumptions,
the standard harmonic trap setting Eq.~1! is a lower estimate
for the decoherence rate.

Even without going into details of our derivation, whic
are given in Sec. IV, it is easy to understand where a form
like Eq. ~1! comes from.N2 is the main factor that makes th
decoherence rate large. It comes from the master equatio
Bloch-Lindblad formṙ;2†NA2NB ,@NA2NB ,r#‡, with A
andB the two internal states of the atoms.N2 is the distance
squared between macroscopically different components
the superposition (uN,0&1u0,N&)/A2—the common-wisdom
reason why macroscopic objects are classical@1#. The factor
in brackets in Eq.~1! is the scattering rate of a condensa
atom on noncondensate atoms—the very process by w
the thermal cloud environment learns the quantum state
the system.

Let us estimate the decoherence rate for a set of typ
parameters:T51 m K, v550 Hz, anda53 –5 nm. The
thermal velocity isvT'1022 m/s. The volume of the trap
can be approximated byV54pareturn

3 /3, where areturn

5A2kBT/mv2 is the return point in a harmonic trap at th
energy ofkBT. We estimate the decoherence time astdec
'105 s/(NEN2). For NE5100–104 and N510–107 it can
range from 1000 s down to 10213 s. For N510 our
~over! estimate fortdec is large. However, forN51000 and
NE510 ~which are still below the Thomas-Fermi regim!
tdec has already shrunk down to milliseconds. Given that o
tdec is an upper estimate and that big condensates are m
©2000 The American Physical Society07-1
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DALVIT, DZIARMAGA, AND ZUREK PHYSICAL REVIEW A 62 013607
interesting as Schro¨dinger cats, it is clear that for the sake
the cat’s longevity, one must go beyond the standard h
monic trap setting.

From Eqs.~1! and ~2! it is obvious that the decoherenc
rate depends greatly on temperature and on chemical po
tial. The two factors strongly influence bothNE and vT .
Both can be improved by the following scenario, which is
combination of present day experimental techniques. In
experiment of Ref.@11# a narrow optical dip was superpose
at the bottom of a wide magnetic trap. The parameters of
dip were tuned so that it had just one bound state. The
between this single condensate mode and the first exc
state was 1.5mK, which at T51 mK gives a fugacity of
z5exp(21.5). We need the gap so that we can use
single-mode approximation. At low temperatures, the g
results in a small fugacity, which is convenient for calcu
tions. We propose to prepare a condensate inside a sim
combination of a wide magnetic and a narrow optical trap~or
more generally a wide well plus a narrow dip with a sing
bound mode! and then to open the magnetic trap and let
noncondensed atoms disperse. The aim is to get rid of
thermal cloud as much as possible. A similar technique w
used in the experiment of Ref.@12#.

Let us estimate the ultimate limit for the efficiency of th
technique. At the typical initial temperature of 1mK the
thermal velocity of atoms is 1022 m/s. An atom with this
velocity can cross a 1mm dip in 1024 s. If we wait for,
say, 1 s after opening the wide trap, then all atoms w
velocities above 1026 m/s will disperse away from the dip
A thermal velocity of 1026 m/s corresponds to the temper
ture of 1028 mK. As the factorNEvT;T7/2 in Eq. ~1!, then
1 s after opening the wide trap the decoherence rate du
noncondensed atoms is already reduced by a factor of 10228.

It is not realistic to expect such a ‘‘cosmological’’ redu
tion factor. The ‘‘dip’’ that is left after the wide harmoni
trap is gone could be, for example, a superposition of
ideal dip plus a wide shallow well~which was a negligible
perturbation in the presence of the wide harmonic trap!. The
well would have a band of widthDE of bound states which
would not disperse but preserve their occupation numb
from before the opening of the wide trap. They would stay
contact with the condensate and continue to ‘‘monitor’’
quantum state. Even if such a truncated environment hap
to be already relatively harmless, there are means to do b
than that.

Further reduction of the decoherence rate can be achie
by ‘‘symmetrization’’ of the environmental state. Perfe
symmetrization can be obtained provided that~i! atoms have
two internal statesuA& and uB&, ~ii ! uA& and uB& experience
the same trap potential,~iii ! A-A andB-B scattering lengths
are the same,~iv! the Hamiltonian has a term that drive
coherent transitionsA↔B with a frequency ofl/\, and~v!
DE!l. The term in~iv! can be realized by driven cohere
transitions as in the experiments of Refs.@13#.

Given an ideal symmetry betweenA andB @assumptions
~i!–~iii !#, the eigenmodes of the dilute environment have
nihilation operatorsSs;(as1bs) and Os;(as2bs), which
are symmetric and antisymmetric, respectively.as andbs are
annihilation operators for the two internal states of an at
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in the trap eigenstate numbereds with trap eigenenergy of
es . Ss has energy (es2l) andOs has energy (es1l). The
symmetric and antisymmetricDE bands of states can be v
sualized as two ladders shifted with respect to each othe
2l. In other words, the two sets of states experience
same, but shifted, trapping potentials. If~v! is satisfied, then
the antisymmetricOs’s are nearly empty since they ca
evaporate into symmetric states and then leave the trap.
symmetricSs’s cannot distinguish betweenA andB so they
do not destroy the quantum coherence between the Sc¨-
dinger cat’s components. After symmetrization,NE in Eq.
~1! has to be replaced by the final number of atoms in
antisymmetric states only:

NE
O'H nlexp@~m2l!/kBT#, for 2l,DE

0 for 2l.DE.
~3!

HereT is the temperature before opening the wide trap.nl is
the number of antisymmetric bound states that remain wit
the DE band of symmetric states. Atoms in these antisy
metric bound states cannot disperse away. For 2l.DE this
number nl is zero and there is no decoherence from
thermal cloud.

In this perfect symmetrization limit the statesu6&
[(uN,0&6u0,N&)/A2 exist within a decoherence-free point
subspace of the Hilbert space, since they have degene
eigenvalues of the interaction HamiltonianV @14–16#. Any
state of that subspace can be written asauN,0&1bu0,N&,
with a andb complex numbers. IfP[auN,0&1bu0,N&] denotes a
projector onto that subspace, then

@V,P[auN,0&1bu0,N&] #50, ~4!

which means that any quantum superpositionauN,0&
1bu0,N& in the subspace is an eigenstate of the system
erators in the interaction Hamiltonian~a perfect pointer
state!, and as such will retain its phase coherence and
forever. The interaction Hamiltonian between the condens
and the thermal cloud is the sum of products of condens
operators and environmental operators. Only terms w
symmetric environmental operators are relevant because
antisymmetric states are empty. The total Hamiltonian
symmetric with respect toA↔B so, to preserve this symme
try, the relevant terms with symmetric environmental ope
tors also contain symmetric condensate operators. The a
ment simplifies greatly for small fugacity where there is on
one leading term with theNA1NB condensate operator. Th
statesu6& are its eigenstates with the same eigenvalueN.
They are also~almost! degenerate eigenstates of the cond
sate Hamiltonian built out ofNA,B . The coherent transitions
A↔B break this degeneracy ofu6& but the difference of
their eigenfrequencies is negligible as compared to the u
condensate lifetime of;10 s. In the next-to-leading order i
fugacity there are symmetric interaction terms which chan
the number of condensed atoms. These terms drive theuN,0&
7-2
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DECOHERENCE IN BOSE-EINSTEIN CONDENSATES: . . . PHYSICAL REVIEW A62 013607
and u0,N& states into slightly ‘‘squeezedlike’’ statesuS,0&
and u0,S&, respectively@17#. There are also terms that ex
changeA with B. They give each state a small admixture
the opposite component. Superpositions of these are
decoherence-free pointer subspaces—there are no rele
antisymmetric operators to destroy their quantum cohere
When the antisymmetric environmental states begin to
occupied@see Eq.~3!#, then the commutation relation Eq.~4!
is only approximate and states within the subspace will
cohere. To leading order in fugacity and condensate size
decoherence rate is given by Eqs.~1! and ~3!.

This pointer subspace is not perfect—its existence is
apparent contradiction with the finite lifetimes of the conde
sates, which can last for at most 10–20 s. The reason is
the thermal cloud is not the only source of decoherence.
condensate loses atoms because of Rayleigh scattering
ternal heating, and three-body decay. The atoms that es
from the condensate carry information about its quant
state. They destroy its quantum coherence. Three-body
cay, the last process of the three above, is the most impo
one @11#. In the experiment of Ref.@11# the measured los
rate per atom was 4/s forN5107, or around 1 atom pe
1027 s. The last rate scales likeN3 so already forN5104

just one atom is lost per second; the decoherence time is
Another possibility is to increase the dip radius slightly. T
loss rate scales like density squared so an increase in th
width by a factor of 2 reduces the loss rate by a factor
26564.

Ambient magnetic fields are yet another source of coh
ence loss@18#. The condensed atoms have magnetic m
ments. If the magnetic moments ofA and B were different
the magnetic field would distinguish between them a
would introduce an unknown phase into the quantum su
position, thus rendering its underlying coherent nature un
tectable. Fortunately, the much useduF,mF&5u2,1&,u1,21&
states of87Rb have the same magnetic moments. For th
the magnetic field is a ‘‘symmetric’’ environment@18#.

One more source of decoherence is the typical'1% dif-
ference between theA-A andB-B scattering lengths, which
violates the assumption~iii ! above. The Hamiltonian is no
perfectly symmetric underA↔B. Even for a perfectly sym-
metrized environment, symmetric environmental operat
couple to not fully symmetric condensate operators. T
means that for the 1% difference of scattering lengths s
metrization can improve the decoherence time by at m
two orders of magnitude as compared to the unsymmetr
environment.

In summary, we outlined a BEC scenario for an expe
mental realization of a decoherence-free Schro¨dinger cat.
This scenario has two ingredients:~1! opening of the wide
trap followed by an evaporation of the thermal cloud, and~2!
symmetrization of the environment. The Schro¨dinger cat is
expected to be a quantum superposition of number eig
states,uN,0& and u0,N&.

More details can be found in Secs. II–IV, where we stu
the decoherence rate and the idea of the symmetrized e
ronment. Finally, Sec. V contains discussion.
01360
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II. SYMMETRIZED ENVIRONMENT

We introduce annihilation operators foruA& and uB&,

fA~xW !5ag~xW !1(
s

asus~xW !,

~5!

fB~xW !5bg~xW !1(
s

bsus~xW !,

whereg(xW ) is the ground state wave function localized in t
dip with energyeg,0, ands is an index running over ex
cited ~environmental! states with orthonormal wave func
tions us(xW ). The Hamiltonian of the system is

H5E d3xFv~fA
†fA!~fB

†fB!1S u

2
fA

†fA
†fAfA1¹fA

†¹fA

1U~r !fA
†fA2lfA

†fBD1$A↔B%G . ~6!

Here u54p\2aAA /m (aAA5aBB are the interscattering
lengths! and v54p\2aAB /m (aAB is the intrascattering
length!. The immiscibility assumption impliesv.u. U(r ) is
the trap potential andl is the strength of the coherent drivin
transitionsA↔B. Substitution of Eq.~5! into Eq. ~6! and
subsequent linearization gives a Hamiltonian for the dil
environment:

HE5(
s

@es~as
†as1bs

†bs!2l~as
†bs1bs

†as!#. ~7!

es is the single-particle energy of levels. We take the lowest
enviromental energy min(es)50. The transformation

Ss5
as1bs

A2
, Os5

as2bs

A2
~8!

bringsHE to a diagonal form:

HE5(
s

@~es2l!Ss
†Ss1~es1l!Os

†Os#. ~9!

Symmetric S’s and antisymmetricO’s form two identical
ladders of states but shifted with respect to each other byl.
There is a gap (2l2eg).0 between the lowestSs state and
the ground state. In equilibrium the stateSs’s occupation
number isns

S51/$exp@b(es2l2eg)#21%'zexp@2b(es2l)#,
where the fugacityz5exp(2buegu) is assumed to be smal
The Os’s occupation number isns

O'ns
Sexp(22bl). If 2lb

@1, then theO’s would be nearly empty. The condensa
two-mode Hamiltonian is

HC5eg~a†a1b†b!2l~a†b1b†a!1
uc

2
~a†a†aa1b†b†bb!

1vc~a†b†ab!, ~10!
7-3
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where, e.g.,uc5u*d3xg4(xW ) andvc.uc . This Hamiltonian
was studied in detail in@7,19#. For a purity factor e
[@l/(vc2uc)N#N!1 the lowest energy subspace conta
two macroscopic superpositions,

u1&5
1

A2N!
@~a†!N1~b†!N#u0,0&[

1

A2
~ uN,0&1u0,N&),

~11!

u2&5
1

A2N!
@~a†!N2~b†!N#u0,0&[

1

A2
~ uN,0&2u0,N&).
n
a
t

iti
m

01360
s

The loweru1& and the higheru2& states are separated by
small energy gap ofN(uc2vc)e ln e. If we just havee,1,
the u6& states contain an admixture of intermediate sta
uN21,1&, . . . ,u1,N21& such that their overlap iŝ1u2&
5e. For e@1 they shrink to

~a†6b†!Nu0,0&. ~12!

From now on we assume the pure case,e!1.
Finally, the interaction HamiltonianV, which contains all

condensate-noncondensate vertices, is the sum of a sym
ric
VS5@~4u12v !~a†a1b†b!1~2v !~a†b1b†a!# ^ S (
s1 ,s2

Ss1

† Ss2
as

1
!s2D 1@~u1v !~a†1b†!# ^ S (

s1s2s3

Ss1

† Ss2
Ss3

bs
1
!s2s3D

1H.c.1@~4u12v !~a†a1b†b!2~2v !~a†b1b†a!# ^ S (
s1 ,s2

Os1

† Os2
as

1
!s2D

1@a†1b†# ^ S ~u2v ! (
s1s2s3

Ss1

† Os2
Os3

bs
1
!s2s3

1~4u! (
s1s2s3

Os1

† Os2
Ss3

bs
1
!s2s3D 1H.c. ~13!
orm

il-
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i.e.,
e

and an antisymmetric part

VO5@~4u22v !~a†a2b†b!1~2v !~a†b2b†a!#

^ F (
s1 ,s2

Ss1

† Os2
as

1
!s2

1H.c.G1@a†2b†#

^ F (
s1s2s3

bs
1
!s2s3

„~u1v !Os1

† Os2
Os3

1~u2v !Os1

† Ss2
Ss3

1~2u!Ss1

† Ss2
Os3

…G1H.c. ~14!

The coefficients are given by the integrals

as
1
!s2

5
1

4E d3xg2us1

! us2
, bs

1
!s

2
!s3

5
1

2A2
E d3xgus1

! us2

! us3
.

~15!

In VS and VO we neglected vertices C1C→C1NC and C
1C→NC1NC, where C is a condensate and NC is a no
condensate particle, and their Hermitian conjugates. They
forbidden by energy conservation due to the gap between
condensate mode and the lowest environmental state.

All the terms inVS,O were arranged in the form@conden-
sate operator#^ @environment operator#. VS contains only
@c.o.#’s which are symmetric undera↔b. They act in pre-
cisely the same way on both components of the superpos
and as such they do not destroy coherence between the
roscopic components. To illustrate this let us calculate
commutator of the leading-order term inVS with the projec-
tor onto the subspace of statesauN,0&1bu0,N&,
-
re
he

on
ac-
a

F ~4u12v !~a†a1b†b! ^ (
s1 ,s2

Ss1

† Ss2
as

1
!s2

,P[auN,0&1bu0,N&] G
50. ~16!

This commutator vanishes because states of the f
auN,0&1bu0,N& are eigenstates ofNC5a†a1b†b. There-
fore, this subspace would be a pointer subspace@14# if this
leading term were the only term in the interaction Ham
tonian. However,VS has other terms that are not simp
functions of the total condensate number operator. Cohe
states of an annihilation operatora1b are exact eigenstate
of the @c.o.# a1b and approximate eigenstates ofa†1b†.
These coherent states, however, are combinations of~12! and
as such they are not in the lowest energy subspace ofHC .
What is more, the matrix elements ofa1b are of the order
O(AN) which is negligible as compared to the matrix el
ments of the number operator. If we projecta1b and its H.c.
on the subspace~11!, then their approximate eigenstates f
large uzu are coherent statesauz,0&1bu0,z&. The decoher-
ence effects ofa1b andNC put together lead to a superpo
sition of macroscopic ‘‘squeezedlike’’ statesauS,0&
1bu0,S&. This result is by now well established for a singl
component condensate@17#. Finally, the @c.o.# a†b1b†a
drives the state out of the pointer subspace~11!. Its effect is
supressed by the purity conditione!1 and is also negligible
as compared to the direct effect of thel term in HC . A
similar comment applies to the ‘‘out of the subspace’’ acti
of a†1b†. Therefore, the effect of all these terms inVS
implies that the subspace spanned byuN,0& and u0,N& is no
longer an exact decoherence-free pointer subspace,
@VS ,P[auN,0&1bu0,N&] #Þ0. The correct pointer subspac
7-4
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would be one spanned by those ‘‘squeezedlike’’ states. H
ever, to leading order in fugacity and in the condensate
N, the dominant terms are those depending onNC ; the sub-
space of auN,0&1bu0,N& is ~approximately! the exact
decoherence-free pointer subspace.

The antisymmetric@c.o.#’s in VO act in opposite ways on
the two components; they destroy their quantum cohere
To illustrate this let us calculate a commutator of the lead
term in VO with the projector operator onto the subspa
auN,0&1bu0,N&,

F ~4u22v !~a†a2b†b!

^ S (
s1 ,s2

Ss1

† Os2
as

1
!s2

1H.c.D ,P[auN,0&1bu0,N&] G
52N~4u22v !~ab!uN,0&^0,Nu2a!bu0,N&^N,0u!

^ S (
s1 ,s2

Ss1

† Os2
as

1
!s2

1H.c.D . ~17!

The commutator isO(N). The occupation numbers of th
O’s are suppressed by a Boltzmann factornSexp(22lb); for
2lb@1 theO’s are unoccupied. As such they cannot sca
into condensate particles. It is also impossible to scatterS’s
into O’s thanks to energy conservation. The unoccupiedO’s
are irrelevant for decoherence and as such can be negle
in V and in the above commutator. This effectively sets
dangerousVO to zero and leaves us only withVSÞ0. In the
absence ofO’s the statesauN,0&1bu0,N& are a pointer sub-
space~or a decoherence-free subspace!. The symmetrized
environment of justS’s defines the quantum states of th
components but it does not destroy their mutual coheren

III. MASTER EQUATION

The symmetrized environment is a robust idea whose
lidity does not depend on detailed calculations. Neverthel
for the sake of illustration we derived~by a perturbative ex-
pansion inV) an approximate Bloch-Lindblad form mast
equation for the reduced density matrixr(t) of the conden-
sate modes. The calculations are long but rather straigh
ward; their details can be found in Sec. IV. Here we just g
the final result:

ṙ5
i

\
@r,HC

ren#1 ṙS1 ṙO. ~18!

HC
ren is a renormalized condensate Hamiltonian,

HC
ren5HC1^HC&1c1D1

†D11c2D2
†D21c3D3

†D31c4D4
†D4 .

~19!

^•••& means an average over an initial environment ther
density matrix andṙS and ṙO are contributions fromVS and
VO , respectively. They read

ṙS5d1D@D1#r1d2D@D2#r, ~20!
01360
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ṙO5d3D@D3#r1d̃3D@D3
†#r1d4D@D4#r ~21!

with D@D#r[$D†D,r%22DrD† the Lindblad operator. The
operators introduced in this expression are defined as

D15~4u12v !~a†a1b†b!1~2v !~a†b1b†a!, ~22!

D25~u1v !~a†1b†!, ~23!

D35~4u22v !~a†a2b†b!1~2v !~a†b2b†a!, ~24!

D45a†2b†. ~25!

The coefficientsci and di are proportional to fugacityz.
What is more,c3,4/c1,2;e22lb andd3,4/d1,2;e22lb. As an-
ticipated, the antisymmetric contributions are supressed b
Boltzmann factor due to theO’s. This approximate maste
equation confirms our heuristic arguments.

Any asymmetry betweenA andB is a source of decoher
ence. If, for example, theA-A and B-B scattering lengths
were different,uAA5u1du and uBB2du, then VO would
acquire extra terms;du. They would show up inṙO with
coefficientsd;zudu. The ratio of these to the ‘‘symmetric’
coefficientsd1,2 is du/u ~which is approximately 0.03 for the
uF51; mF521& and uF52; mF51& states of 87Rb) as
compared tod3,4/d1,2;exp(22lb). If du/u is less than the
Boltzmann factor, then this asymmetry is not a leadi
source of decoherence.

IV. DERIVATION OF THE MASTER EQUATION

We derive a master equation by perturbative expansio
V or in the coupling constantsu,v which we regard to be of
the same order. We assume the initial density matrix at

50 to be a productr̃(0)5r(0)^ rE of the system~conden-
sate! and environment~noncondensate! density matrices. To
take a more accurate starting point we make a rearrangem
V→V2^V& and HC→HC1^V& where ^•••&5TrE@•••rE#
is a trace over the environment thermal density matrix at
initial time. The newHC differs from the old one by the
renormalization

eg→eg
eff5eg1~4u12v !(

s
ns

Sas!s ,

~26!

l→leff5l2~2v !(
s

ns
Sas!s .

We computeṙ̃(t) up to second order in the perturbatio
HamiltonianV5( iD i ^ Ei , with D i an operator for the con
densate andEi one for the environment. The master equati

for r(t) alone is obtained by tracingṙ̃(t) over the noncon-
densed modes. The result is@20#
7-5
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ṙ~ t !5
i

\
@r,HC#2

1

2\2 (
i j

E
0

t

dtgi j
sym~t!

3†D i~0!,@D j~2t!,r#‡2
1

2\2 (
i j

E
0

t

dtgi j
asym~t!

3@D i~0!,$D j~2t!,r%#, ~27!

where

gi j
sym~t!5^$Ei~t!,Ej~0!%&, ~28!

gi j
asym~t!5^@Ei~t!,Ej~0!#&. ~29!

We have used that after the rearrangementV→V2^V& and
HC→HC1^V&, there are no linear terms in the perturbati
expansion because^V&50. We first study the contribution o
the symmetric termsVS in the interaction Hamiltonian, and
later we shall deal with the antisymmetric onesVO . It is easy
to show that there are no cross terms S-O in the calcula
of the master equation.

A. Free Hamiltonian

The next step in the calculation is to solve the dynam
of the free condensate Hamiltonian

HC5~uc2vc!Jz
21leffJx , ~30!

where we introduced the angular momentum operators

Jx5 1
2 ~a†b1b†a!, ~31!

Jy5
i

2
~b†a2a†b!, ~32!

Jz5
1
2 ~a†a2b†b!, ~33!

and discarded constant terms proportional to the total n
ber of particlesN5a†a1b†b @19#. The Heisenberg equa
tions of motion for the condensate operatorsa(t) and b(t)
are

i\ȧ5eg
effa2leffb1~uca

†a1vcb
†b!a,

~34!
i\ḃ5eg

effb2leffa1~ucb
†b1vca

†a!b.

These equations cannot be solved exactly forleffÞ0, when
the numbers ofa’s andb’s are not conserved independent
due to the coherent transfer of particles from one state to
other. In their mean-field version, these equations corresp
to the well-known macroscopic self-trapping equatio
which have the feature that below a critical ‘‘purity’’ th
oscillations between statesA and B are not complete; fore
!1 the system is self-locked in either of these states@21#. In
this limit we can setleff to zero, and for the immiscible cas
vc.uc the ground state ofHC corresponds to maximum
eigenstates ofJz

2 , i.e., pure cat states~11!. Also, in this case
the mean-field solutions are
01360
n

s

-

e
nd
,

a~ t !5a~0!expH 2
i t

\
@eg

eff1N~uc1vc!/2#J ,

~35!

b~ t !5b~0!expH 2
i t

\
@eg

eff1N~uc1vc!/2#J .

We believe that these solutions are qualitatively correct
long as the purity factore!1.

B. Symmetric interaction Hamiltonian

The symmetric Hamiltonian can be written as

VS5D1E11D̃1Ẽ11@D2E21D̃2Ẽ21H.c.#, ~36!

where we have defined the condensate operators

D15~4u12v !~a†a1b†b!1~2v !~a†b1b†a!, ~37!

D̃15~4u12v !~a†a1b†b!2~2v !~a†b1b†a!, ~38!

D25~u1v !~a†1b†!, ~39!

D̃25~u1v !~a†1b†!, ~40!

and the corresponding noncondensate operators

E15 (
s1 ,s2

as
1* ,s2

Ss1

† Ss1
2(

s
uas* ,su2Ss

†Ss , ~41!

Ẽ15 (
s1 ,s2

as
1* ,s2

Os1

† Os1
2(

s
uas* ,su2Os

†Os , ~42!

E25 (
s1 ,s2 ,s3

bs
1* ,s2 ,s3

~Ss1

† Ss2
Ss3

1Os1

† Ss2
Os3

!, ~43!

Ẽ25 (
s1 ,s2 ,s3

bs
1* ,s2 ,s3

~Os1

† Os2
Ss3

1Ss1

† Os2
Os3

!. ~44!

It is clear that the termsD i and D̃ i and their corresponding
environment operators have the same structure, and there
will give the same qualitative contribution to the mast
equation. In the following we shall keep only theD i terms.

The expectation values of multiple-point noncondens
operators are written in terms of the two-point functions

^Ss1

† ~ t1!Ss2
~ t2!&5ds1s2

ns1

S e( i /\)(es1
2l)(t12t2)e2gs1

S ut12t2u,

^Os1

† ~ t1!Os2
~ t2!&5ds1s2

ns1

O e( i /\)(es1
1l)(t12t2)e2gs1

O ut12t2u,

~45!

^Ss1

† ~ t1!Os2
~ t2!&50

via Wick’s theorem. Herens
S,O5@zeb(es6l)21#21 are Bose

occupation numbers, and thegs’s are inverse finite lifetimes
of the environmental states. We also expand these expe
tion values to leading order in fugacityz. The kernels are
7-6
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^E1~t!E1~0!&5^E1~0!E1~t!&*

5 (
s1 ,s2

uas
1* ,s2

u2ns1

S e( i t/\)(es1
2es2

)

3e2t(gs1

S
1gs2

S )1O~z2!, ~46!

^E2~t!E2
†~0!&5^E2~0!E2

†~t!&*

5 (
s1 ,s2 ,s3

ubs
1* ,s2 ,s3

u2e( i t/\)(es1
2es2

2es3
1l)

3@2ns1

S e2t(gs1

S
1gs2

S
1gs3

S )

1ns1

O e2t(gs1

O
1gs2

S
1gs3

O )#1O~z2!, ~47!
01360
^E2
†~t!E2~0!&5^E2

†~0!E2~t!&5O~z2!. ~48!

Given the kernels and the free evolution of condensate
erators, we have to perform the time integrals in Eq.~27!.
We calculate the master equation for late timest@gs

21 .
Hence the exponential decay of the propagators domin
their behavior, and we can apply the Markovian approxim
tion, replacing the upper limit in the time integration by in
finity. This calculation results in two different contribution
one being a renormalization of the free Hamiltonian,

dHC5c1D1
†D11c2D2

†D2 , ~49!

where
c15
1

\2 (
s1 ,s2

uas
1* ,s2

u2ns1

S
\21~es1

2es2
!

~gs1

S 1gs2

S !21@\21~es1
2es2

!#2
, ~50!

c25
1

\2 (
s1 ,s2 ,s3

ubs
1* ,s2 ,s3

u2S 2ns1

S
\21@es1

2es2
2es3

1l1eg
eff1N~uc1vc!/2#

~gs1

S 1gs2

S 1gs3

S !21$\21@es1
2es2

2es3
1l1eg

eff1N~uc1vc!/2#%2

1ns1

O
\21@es1

2es2
2es3

1l2eg
eff2N~uc1vc!/2#

~gs1

O 1gs2

S 1gs3

O !21$\21@es1
2es2

2es3
1l2eg

eff2N~uc1vc!/2#%2D . ~51!

The other contribution has the Lindblad formD@D#r[$D†D,r%22DrD† and reads

ṙS5d1D@D1#r1d2D@D2#r, ~52!

where

d152
1

\2 (
s1 ,s2

uas
1* ,s2

u2ns1

S
gs1

S 1gs2

S

~gs1

S 1gs2

S !21@\21~es1
2es2

!#2
, ~53!

d252
1

\2 (
s1 ,s2 ,s3

ubs
1* ,s2 ,s3

u2S 2ns1

S
gs1

S 1gs2

S 1gs3

S

~gs1

S 1gs2

S 1gs3

S !21$\21@es1
2es2

2es3
1l1eg

eff1N~uc1vc!/2#%2

1ns1

O
gs1

S 1gs2

S 1gs3

S

~gs1

O 1gs2

S 1gs3

O !21$\21@es1
2es2

2es3
1l1eg

eff1N~uc1vc!/2#%2D . ~54!

C. Antisymmetric interaction Hamiltonian

The antisymmetric Hamiltonian is

VO5D3E31D4E41H.c., ~55!

where now

D35~4u22v !~a†a2b†b!1~2v !~a†b2b†a!, ~56!

D45a†2b†, ~57!
7-7
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and the corresponding environment operators

E35 (
s1 ,s2

as
1* ,s2

Os1

† Ss2
, ~58!

E45 (
s1 ,s2 ,s3

bs
1* ,s2 ,s3

@~u1v !Os1

† Os2
Os3

2~u2v !Os1

† Ss2
Ss3

12uSs1

† Ss2
Os3

#. ~59!

The kernels are

^E3~t!E3
†~0!&5^E3~0!E3

†~t!&*

5 (
s1 ,s2

uas
1* ,s2

u2ns1

O e( i t/\)(es1
2es2

12l)

3e2t(gs1

O
1gs2

S )1O~z2!, ~60!

^E3
†~t!E3~0!&5^E3

†~0!E3~t!&*

5 (
s1 ,s2

uas
1* ,s2

u2ns1

O e( i t/\)(es1
2es2

22l)

3e2t(gs1

S
1gs2

O )1O~z2!, ~61!
01360
^E3
†~t!E3~0!&5^E3

†~0!E3~t!&5O~z2!, ~62!

^E4~t!E4
†~0!&5^E4~0!E4

†~t!&*

5 (
s1 ,s2 ,s3

ubs
1* ,s2 ,s3

u2@2~u1v !2ns1

O

3e( i t/\)(es1
2es2

2es3
2l)2t(gs1

O
1gs2

O
1gs3

O )

12~u2v !2ns1

O

3e( i t/\)(es1
2es2

2es3
13l)2t(gs1

O
1gs2

O
1gs3

O )#,

~63!

^E4
†~0!E4~t!&5^E4

†~t!E4~0!&5O~z2!. ~64!

The renormalization terms are

dHC5c3D3
†D31c4D4

†D4 ~65!

with
c35
1

\2 (
s1 ,s2

uas
1* ,s2

u2S ns1

O
\21~es1

2es2
22l!

~gs1

S 1gs2

O !21@\21~es1
2es2

22l!#2
2ns1

O
\21~es1

2es2
12l!

~gs1

O 1gs2

S !21@\21~es1
2es2

12l!#2D , ~66!

c45
1

\2 (
s1 ,s2 ,s3

ubs
1* ,s2 ,s3

u2F 2~u1v !2ns1

O
\21@es1

2es2
2es3

2l1eg
eff1N~uc1vc!/2#

~gs1

O 1gs2

O 1gs3

O !21$\21@es1
2es2

2es3
2l1eg

eff1N~uc1vc!/2#%2

12~u2v !2ns1

O
\21@es1

2es2
2es3

1l2eg
eff2N~uc1vc!/2#

~gs1

O 1gs2

S 1gs3

S !21$\21@es1
2es2

2es3
13l2eg

eff2N~uc1vc!/2#%2D . ~67!

Finally, the Lindblad part is

ṙO5d3D@D3#r1d̃3D@D3
†#r1d4D@D4#r, ~68!

where

d352
1

\2 (
s1 ,s2

uas
1* ,s2

u2ns1

O
gs1

S 1gs2

O

~gs1

S 1gs2

O !21@\21~es1
2es2

22l!#2
, ~69!

d̃352
1

\2 (
s1 ,s2

uas
1* ,s2

u2ns1

O
gs1

O 1gs2

S

~gs1

S 1gs2

O !21@\21~es1
2es2

12l!#2
, ~70!
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d452
1

\2 (
s1 ,s2 ,s3

ubs
1* ,s2 ,s3

u2S 2~u1v !2ns1

O
gs1

O 1gs2

O 1gs3

O

~gs1

O 1gs2

O 1gs3

O !21$\21@es1
2es2

2es3
2l1eg

eff1N~uc1vc!/2#%2

12~u2v !2ns1

O
gs1

O 1gs2

S 1gs3

S

~gs1

O 1gs2

S 1gs3

S !21$\21@es1
2es2

2es3
13l1eg

eff1N~uc1vc!/2#%2D . ~71!
tu
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D. Estimate of the decoherence rate

To estimate the decoherence rate for our BEC quan
superposition, let us consider one of the terms in Eq.~68!,
namely, ṙ516v2d3†Jz ,@Jz ,r#‡, which arises from theD3
term. This term corresponds to elastic two-body collisio
between condensate and noncondensate atoms, and in
phase decoherence. To this end we first make an estima
for the coefficientas

1* ,s2
that enters ind3. We assume tha

we have a large harmonic trap plus the dip located in
center. We take as the wave function for the ground sta
Gaussiang(xW )5@mvdip /(p\)#3/2exp(2mvdipr

2/\), where
vdip is the frequency of the optical trapping potential in t
dip. In principle, we should use thermal wave packets for
wave functions of the noncondensed particles@22#. However,
due to the strong localization of the condensate in the dip,
can approximate the noncondensed particles as plane w
Then

as
1* ,s2

5
1

4E d3xg2~xW !
eikW1•xW

AV

e2 ikW2•xW

AV

5
1

4V
expS 2

\

4mvdip
ukW12kW2u2D . ~72!

On the other hand, the decay rateg is much smaller thanv.
This lets us replace the last factor ind3 by pd„\21(es1

2es2
)…, where we have used the identity lim

g→0
@g/(g2

1x2)#5pd(x). Finally, replacing the sum over momenta b
the continuum expression(kW→V*d3k5V*dVdkk2, and us-
ing the free dispersion relationekW5\2k2/2m, we find

d352
pm

16\3E dk1k1
3ze2ble2b\2k1

2/2m

3E dV1dV2e2(\k1
2/mvdip)(12cosa), ~73!

where a is the angle between the two vectorskW1 and kW2
corresponding to the two scattered noncondensed parti
Since the condensate in the dip is very localized, its typ
linear dimension beingl dip5A\/mvdip, then l dip! l thermal,

wherel thermal5A\2/2mkBT is the thermal de Broglie wave
length. This means that in the above expression the
~thermal! exponential factor dominates, and we can appro
mated3 by
01360
m

s
ces

ion

s
a

e

e
es.

es.
l

st
i-

d3'2
pm~4p!2

16\3 E dk1k1
3ze2ble2b\2k1

2/2m

52
p2m2

4\4
rEvT , ~74!

wherevT5A2kBT/m is the thermal velocity of the noncon

densed particles, andrE5NE /V5V21(kWze2ble2b\2k1
2/2m

is the density of noncondensed particles in the antisymme
states.

Given the expression ford3, we can give an estimate fo
the decoherence rate. In theuJ,M & basis, withJ5N/2 and
JzuJ,M &5(1/2)(NA2NB)uJ,M &, the master equation reads

ṙ~M ,M 8!'16v2d3~M2M 8!2r~M ,M 8!

516p3g~M2M 8!2r~M ,M 8!. ~75!

For the quantum superposition stateuN,0&1u0,N&, M2M 8
5N, so our final estimate for the decoherence rate is

tdec
21'16p3S 4pa2

NE

V
vTDN2. ~76!

The onlyO(z) contribution to the amplitude decoheren
can come from a term proportional tod4. However, under
closer inspectiond4 turns out to beO(z2). d4 comes from a
depletion/growth inelastic process such that a nonconden
particle in the initial state ofs1 collides with a condensate
particle and as a result they both end in nonconden
modess2 and s3. For this to happens1 must have a suffi-
ciently high energy to overcome a gap between the cond
sate mode and the environmental modes. Thus in this c
ns1

O 5O(z2) and notO(z).

V. DISCUSSION

The aim of this paper was to discuss the ‘‘longevity’’ o
Schrödinger cats in BEC’s. We have shown that, while in t
standard traps decoherence rates are significant enoug
prevent long-lived macroscopic superpositions of inter
states of the condensate, the strategy of trap engineering
symmetrization of the environment will be able to deal w
that issue.

What remains to be considered is how one can gene
such macroscopic quantum superposition, and how one
detect it. The issue of generation was already touched u
in Refs.@7,8#. We have little to add to this. However, in th
7-9
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context of the Gordon and Savage proposal, it is fairly cl
that the time needed to generate the cat state would hav
be short compared to the decoherence time. If our estim
of Eq. ~1! are correct, a symmetrization procedure appe
necessary for the success of such schemes.

Detection of Schro¨dinger cat states is perhaps a mo
challenging subject. In principle, states of the form (uN,0&
1u0,N&)/A2 have the character of GHZ states, and o
could envision performing measurements analogous to th
suggested in@23# and carried out in@24#, where a four-atom
entangled state was studied. However, this sort of par
check strategy, appropriate forN<10, is likely to fail when
N is larger, or when~as would be the case for the ‘‘qua
sisqueezed’’ states anticipated here@17#! N is not even well
defined.

Strong circumstantial evidence can nevertheless be
tained from two measurements. The first one would con
of preparation of the cat state, and measurement of the in
nal states of the atoms. It is expected that in each instanc
~to within the experimental error! would be in eitherA or B
states. However, averaged over many runs, the numbe
these two alternatives would be approximately equal. De
herence in which the environment also ‘‘monitors’’ the i
an

;

01360
r
to

es
rs

e
se

-

b-
st
r-

all

of
o-

ternal state of the atoms in theA versusB basis would not
influence this prediction. We need to check separat
whether the cat state was indeed coherent. To do this,
could evolve the system ‘‘backwards.’’ However, this is n
really necessary. For, as Gordon and Savage point out, w
in their scheme, we let the system evolve unitarily for mo
or less twice the time needed for the generation of the
state, it will approximately return to the initial configuratio
Thus, we can acquire strong evidence of the coherence o
cat provided that this unitary return to the initial configur
tion can be experimentally confirmed.

These are admittedly rather vague ideas, which se
more as a ‘‘proof of principle’’ than as a blueprint for a
experiment. Nevertheless, they may, we hope, encou
more concrete investigation of such issues with a spec
experiment in mind.
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